top of page

Ceftazidime

Grade

Sensitive Bacterial Infections

See through space

Pharmacokinetic Data

  1. Red-Eared Sliders (Trachemys scripta elegans): 20-40 mg/kg, SC, q5d (Hiebert et al., 2024). 

  2. Loggerhead sea turtles (Caretta caretta): 20 mg/kg, IV/IM, q3d (Stamper et al., 1999).

  3. Freshwater Turtles (T. carolina carolina, Trachemys scripta scripta, Pseudemys concinna): 20 mg/kg, IM, q72h q5d (Cerreta et al., 2018).

  4. Kemp’s ridley turtles (Lepidochelys kempii): 22 mg/kg, SC q3d (Innis et al., 2012)

Indication Data

  1. Post Hibernation leucopaenia and septicaemia (Testudo sp): 20 mg/kg, SC/IV/IM, q3d ((McArthur et al., 2004)

  2. Immunosuppression, Septicemia, and Other Infections (Marine Turtles): 22 mg/kg, SC/IV/IM, q3-5d (Innis et al., 2012)

Antibiotic Classification(s)

  • EMA: B (Restrict) (EMA, 2024)

  • WHO: Tier 2 (Abdelsalam Elshenawy et al., 2023; WHO, 2023)

  • ARAV: Tier 2 (Divers et al., 2017; Divers and Burgess, 2023)

  • BSAVA: Second Line (Hedley et al., 2021)b

AMR Considerations

  • Only to be used if culture and sensitivity or MIC testing indicate WHO/ARAV/AAHA Tier 1 drugs are ineffective.

Therapeutics

Therapeutics

Administration Routes

  • Although the PK studies have included only IV and IM routes of administration (Stamper et al. 1999, Innis et al. 2012), SC administration is commonly employed in chelonians with apparently good effect (Innis et al., 2017)

Administration Sites

  • SC administration sites:  The skin between the neck and forelimbs (Divers and Stahl, 2019).

  • IM administration sites:  The forelimb and pectoral muscles (Divers and Stahl, 2019).

  • IV administration sites:  The jugular, brachial, or ventral coccygeal veins (Divers and Stahl, 2019).

Adverse Effects Profile

  • Ceftazidime appears well tolerated in all chelonian species. No publications examined discuss adverse effects or resistance development in chelonans. 

Patient Support

Hydration, thermal, and nutritional support should always be provided to critically ill cheloians. 


Medicine Storage and Handling Practices

Evidence

Evidence Base

Drug Specific Pharmacokinetics

  1. Cerreta, A.J., Lewbart, G.A., Dise, D.R., Papich, M.G., 2018. Population pharmacokinetics of ceftazidime after a single intramuscular injection in wild turtles. Journal of Veterinary Pharmacology and Therapeutics 41, 495–501. https://doi.org/10.1111/jvp.12500

  2. Hiebert, K., Cox, S., Hawkins, S., 2024. Subcutaneous administration of ceftazidime at 20 and 40 mg/kg produces theoretically therapeutic plasma concentrations for at least 120 hours in red-eared sliders (Trachemys scripta elegans). Am J Vet Res 85, ajvr.23.11.0265. https://doi.org/10.2460/ajvr.23.11.0265

  3. Innis, C.J., Ceresia, M.L., Merigo, C., Scott Weber, E., Papich, M.G., 2012. Single-dose pharmacokinetics of ceftazidime and fluconazole during concurrent clinical use in cold-stunned Kemp’s ridley turtles (Lepidochelys kempii). J Vet Pharmacol Ther 35, 82–89. https://doi.org/10.1111/j.1365-2885.2011.01290.x

  4. Lawrence, K., Muggleton, P.W., Needham, J.R., 1984. Preliminary study on the use of ceftazidime, a broad-spectrum cephalosporin antibiotic, in snakes. Research in Veterinary Science 36, 16–20. https://doi.org/10.1016/S0034-5288(18)31994-5

  5. Stamper, M.A., Papich, M.G., Lewbart, G.A., May, S.B., Plummer, D.D., Stoskopf, M.K., 1999. Pharmacokinetics of ceftazidime in loggerhead sea turtles (Caretta caretta) after single intravenous and intramuscular injections. J Zoo Wildl Med 30, 32–35.

Indication-Specific Literature 

  1. Divers, S., Stahl, S. (Eds.), 2019. Mader’s Reptile and Amphibian Medicine and Surgery, Elsevier Enhanced Digital Version, 2019-01-14.  VitalBook file., 3rd Edition. ed.

  2. Eatwell, K., 2007. Antibiotic Therapy in Reptiles. Journal of Herpetological Medicine and Surgery 17, 42–49. https://doi.org/10.5818/1529-9651.17.2.42

  3. Innis, C.J., Harms, C.A., Manire, C.A., 2017. Therapeutics, in: Sea Turtle Health and Rehabilitation. J. Ross Publishing, 2017.  VitalBook file.

  4. McArthur, S., Wilkinson, R., Meyer, J., 2004. Medicine and surgery of tortoises and turtles. Blackwell Pub, Oxford, UK ; Ames, Iowa.


Drug Specific Literature

  1. Abd El-Aty, A.M., Goudah, A., Abo El Sooud, K., 2001. Pharmacokinetics, intramuscular bioavailability and tissue residue profiles of ceftazidime in a rabbit model. Dtsch Tierarztl Wochenschr 108, 168–171.

  2. Abdelsalam Elshenawy, R., Umaru, N., Aslanpour, Z., 2023. WHO AWaRe classification for antibiotic stewardship: tackling antimicrobial resistance - a descriptive study from an English NHS Foundation Trust prior to and during the COVID-19 pandemic. Front Microbiol 14, 1298858. https://doi.org/10.3389/fmicb.2023.1298858

  3. Ackerman, B.H., Ross, J., Tofte, R.W., Rotschafer, J.C., 1984. Effect of decreased renal function on the pharmacokinetics of ceftazidime. Antimicrob Agents Chemother 25, 785–786. https://doi.org/10.1128/AAC.25.6.785

  4. Acred, P., 1983. Therapeutic and kinetic properties of ceftazidime in animals. Infection 11 Suppl 1, S44-48. https://doi.org/10.1007/BF01641106

  5. AVMA, 2024. AAFP/AAHA antimicrobial stewardship guidelines | American Veterinary Medical Association [WWW Document]. URL https://www.avma.org/resources-tools/avma-policies/aafpaaha-antimicrobial-stewardship-guidelines (accessed 12.23.24).

  6. Balant, L., Dayer, P., Auckenthaler, R., 1985. Clinical pharmacokinetics of the third generation cephalosporins. Clin Pharmacokinet 10, 101–143. https://doi.org/10.2165/00003088-198510020-00001

  7. Bauernfeind, A., 1981. An evaluation of the activity of cephalosporins against Pseudomonas aeruginosa. J Antimicrob Chemother 8 Suppl B, 111–117. https://doi.org/10.1093/jac/8.suppl_b.111

  8. Bayer, A.S., Crowell, D.J., Yih, J., Bradley, D.W., Norman, D.C., 1988. Comparative pharmacokinetics and pharmacodynamics of amikacin and ceftazidime in tricuspid and aortic vegetations in experimental Pseudomonas endocarditis. J Infect Dis 158, 355–359. https://doi.org/10.1093/infdis/158.2.355

  9. Bayer, A.S., Norman, D., Kim, K.S., 1985. Efficacy of amikacin and ceftazidime in experimental aortic valve endocarditis due to Pseudomonas aeruginosa. Antimicrob Agents Chemother 28, 781–785. https://doi.org/10.1128/AAC.28.6.781

  10. Bean, A., 2020. Antimicrobial Resistance and Therapy in Exotic Pet Practice.

  11. Benoni, G., Arosio, E., Raimondi, M.G., Apolloni, E., Passarella, E., Lechi, A., Velo, G.P., 1984. Distribution of ceftazidime in ascitic fluid. Antimicrob Agents Chemother 25, 760–763. https://doi.org/10.1128/AAC.25.6.760

  12. Boccazzi, A., Rizzo, M., Caccamo, M.L., Assael, B.M., 1983. Comparison of the concentrations of ceftazidime in the serum of newborn infants after intravenous and intramuscular administration. Antimicrob Agents Chemother 24, 955–956. https://doi.org/10.1128/AAC.24.6.955

  13. Bouza, E., Hellín, T., Rodríguez-Creixems, M., Martínez-Beltrán, J., Loza, E., Baquero, F., 1983. Comparison of ceftazidime concentrations in bile and serum. Antimicrob Agents Chemother 24, 104–106. https://doi.org/10.1128/AAC.24.1.104

  14. Broens, E.M., Van Geijlswijk, I.M., 2018. Prudent Use of Antimicrobials in Exotic Animal Medicine. Veterinary Clinics of North America: Exotic Animal Practice 21, 341–353. https://doi.org/10.1016/j.cvex.2018.01.014

  15. Caneschi, A., Bardhi, A., Barbarossa, A., Zaghini, A., 2023. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics 12, 487. https://doi.org/10.3390/antibiotics12030487

  16. Cristina, R.T., Kocsis, R., Dégi, J., Muselin, F., Dumitrescu, E., Tirziu, E., Herman, V., Darău, A.P., Oprescu, I., 2022. Pathology and Prevalence of Antibiotic-Resistant Bacteria: A Study of 398 Pet Reptiles. Animals (Basel) 12, 1279. https://doi.org/10.3390/ani12101279

  17. Divers, S.J., Burgess, B.A., 2023. ARAV Antimicrobial Stewardship Policy. Journal of Herpetological Medicine and Surgery 33. https://doi.org/10.5818/JHMS.33.1.61

  18. Divers, S.J., Sladakovic, I., Mayer, J., Sanchez, S., 2017. DEVELOPMENT OF AN ANTIBIOTIC POLICY IN A ZOOLOGICAL MEDICINE SERVICE AND APPROACH TO ANTIBIOTIC DOSING USING MIC DATA.

  19. EMA, 2024. EMA AMEG Categorisation of antibiotics for use in animals [WWW Document]. URL https://www.ema.europa.eu/en/documents/report/infographic-categorisation-antibiotics-use-animals-prudent-and-responsible-use_en.pdf

  20. Gómez, C.M., Cordingly, J.J., Palazzo, M.G., 1999. Altered pharmacokinetics of ceftazidime in critically ill patients. Antimicrob Agents Chemother 43, 1798–1802. https://doi.org/10.1128/AAC.43.7.1798

  21. Hedley, J., Whitehead, M.L., Munns, C., Pellett, S., Abou‐Zahr, T., Calvo Carrasco, D., Wissink‐Argilaga, N., 2021. Antibiotic stewardship for reptiles. J of Small Animal Practice 62, 829–839. https://doi.org/10.1111/jsap.13402

  22. Lawrence, K., Muggleton, P.W., Needham, J.R., 1984. Preliminary study on the use of ceftazidime, a broad spectrum cephalosporin antibiotic, in snakes. Research in Veterinary Science 36, 16–20. https://doi.org/10.1016/S0034-5288(18)31994-5

  23. Mader, D., 2008. Antibiotic therapy in reptiles (Proceedings).

  24. Mariat, C., Venet, C., Jehl, F., Mwewa, S., Lazarevic, V., Diconne, E., Fonsale, N., Carricajo, A., Guyomarc’h, S., Vermesch, R., Aubert, G., Bidault, R., Bertrand, J.-C., Zeni, F., 2006. Continuous infusion of ceftazidime in critically ill patients undergoing continuous venovenous haemodiafiltration: pharmacokinetic evaluation and dose recommendation. Crit Care 10, R26. https://doi.org/10.1186/cc3993

  25. McColm, A.A., Ryan, D.M., 1986. Penetration of ceftazidime into the rabbit respiratory tract. J Antimicrob Chemother 18, 593–597. https://doi.org/10.1093/jac/18.5.593

  26. Moody, J.A., Fasching, C.E., Peterson, L.R., Gerding, D.N., 1987. Ceftazidime and amikacin alone and in combination against Pseudomonas aeruginosa and Enterobacteriaceae. Diagn Microbiol Infect Dis 6, 59–67. https://doi.org/10.1016/0732-8893(87)90115-5

  27. Petraitiene, R., Petraitis, V., Kavaliauskas, P., Maung, B.B.W., Khan, F., Naing, E., Aung, T., Zigmantaite, V., Grigaleviciute, R., Kucinskas, A., Stakauskas, R., Georgiades, B.N., Mazur, C.A., Hayden, J.A., Satlin, M.J., Walsh, T.J., 2020. Pharmacokinetics and Efficacy of Ceftazidime-Avibactam in the Treatment of Experimental Pneumonia Caused by Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae in Persistently Neutropenic Rabbits. Antimicrob Agents Chemother 64, e02157-19. https://doi.org/10.1128/AAC.02157-19

  28. Pubmed, 2024. Ceftazidime | C22H22N6O7S2 | CID 5481173 - PubChem [WWW Document].

  29. Richards, D.M., Brogden, R.N., 1985. Ceftazidime. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 29, 105–161. https://doi.org/10.2165/00003495-198529020-00002

  30. Sakata, Y., Boccazzi, A., McCracken, G.H., 1983. Pharmacokinetics and bacteriological effect of ceftazidime in experimental Streptococcus pneumoniae, Haemophilus influenzae, and Escherichia coli meningitis. Antimicrob Agents Chemother 23, 213–217.

  31. Sakata, Y., McCracken, G.H., Thomas, M.L., Olsen, K.D., 1984. Pharmacokinetics and therapeutic efficacy of imipenem, ceftazidime, and ceftriaxone in experimental meningitis due to an ampicillin- and chloramphenicol-resistant strain of Haemophilus influenzae type b. Antimicrob Agents Chemother 25, 29–32. https://doi.org/10.1128/AAC.25.1.29

  32. Shockley, R.K., Fishman, P., Aziz, M., Yannis, R.A., Jay, W.M., 1986. Subconjunctival administration of ceftazidime in pigmented rabbit eyes. Arch Ophthalmol 104, 266–268. https://doi.org/10.1001/archopht.1986.01050140124033

  33. Walstad, R.A., Blika, S., 1985. Penetration of ceftazidime into the normal rabbit and human eye. Scand J Infect Dis Suppl 44, 63–67.

  34. Weese, J.S., Giguère, S., Guardabassi, L., Morley, P.S., Papich, M., Ricciuto, D.R., Sykes, J.E., 2015. ACVIM Consensus Statement on Therapeutic Antimicrobial Use in Animals and Antimicrobial Resistance. J Vet Intern Med 29, 487–498. https://doi.org/10.1111/jvim.12562

  35. WHO, 2023. WHO AWaRe classification of antibiotics 2023 [WWW Document]. Google Docs. URL https://docs.google.com/spreadsheets/d/19ThpjtwBYcrtz1Za21IJ1qxGjPl2Jot7QIFaKCqh75E/edit?gid=0&usp=embed_facebook (accessed 12.22.24).

  36. Xiong, Y.Q., Caillon, J., Zhou, X.Y., Potel, G., Bugnon, D., Le Conte, P., Le Gallou, F., Le Floch, R., Baron, D., Drugeon, H., 1995. Treatment of experimental rabbit infective endocarditis due to a multidrug-resistant Pseudomonas aeruginosa with high-dose ceftazidime alone and combined with amikacin or sulbactam or both. J Antimicrob Chemother 35, 697–706. https://doi.org/10.1093/jac/35.5.697

  37. Yu, Y.-H., Lin, Y.-T., Hsu, Y.-H., Chou, Y.-C., Ueng, S.W.N., Liu, S.-J., 2021. Biodegradable Antimicrobial Agent/Analgesic/Bone Morphogenetic Protein-Loaded Nanofibrous Fixators for Bone Fracture Repair. Int J Nanomedicine 16, 5357–5370. https://doi.org/10.2147/IJN.S325885

  38. Zhou, J., Xu, P., Chen, H., Yu, Y., Chen, Y., 2005. [Therapeutic effect of ceftazidime in a rabbit model of peritonitis caused by Escherichia coli producing CTX-M-14 extended-spectrum beta-lactamase]. Zhonghua Jie He He Hu Xi Za Zhi 28, 689–693.

Monograph Details

Monograph Details

Criteria

  • Active Substance & Term: Ceftazidime | Recommendations

Resources

Development Team

  • Monograph Author(s): S McArthur B Vet Med MRCVS (last updated 25/11/2024)

  • Monograph Editor(s): TBA (last updated DD/MM/YYYY)

Monograph Contact Points


bottom of page